Bioavailability and catabolism of green tea flavan-3-ols in humans.
نویسندگان
چکیده
OBJECTIVE The aim of this study was to investigate green tea flavan-3-ol catabolism and plasma pharmacokinetic and urinary excretion by high-performance liquid chromatography with tandem mass spectrometry to evaluate their absolute bioavailability by taking into account all known and some unknown catabolites deriving from their interaction with the gastrointestinal tract and its host microflora. METHODS A feeding study was carried out in 20 healthy human volunteers who ingested 400 mL of a ready-to-drink green tea containing approximately 400 μmol of flavan-3-ols. Urine and plasma were collected for 4 and 24h, respectively, and 39 relevant catabolites were identified in these biological fluids by tandem mass spectrometry. RESULTS In biological fluids, 39 relevant flavan-3-ol catabolites were identified. In plasma, (-)-epigallocatechin-3-gallate was the only unmetabolized compound and the highest in absolute concentration compared with (-)-epigallocatechin and (-)-epicatechin conjugates. Colonic microflora-derived polyhydroxyphenyl-γ-valerolactones were by far the main urinary catabolites, averaging 10 times greater concentratin than flavan-3-ol conjugates. The calculated bioavailability was equal to 39% and it is interesting to notice the great variability in urinary excretion of colonic metabolites among participants, probably related to differences in their own colonic microflora. CONCLUSION This study demonstrates that green tea catechins are more bioavailable than previously observed when colonic ring fission metabolites are taken into consideration. Regular consumption of ready-to-drink green tea containing flavan-3-ols allows a non-marginal exposure of the human body to these catabolites, somehow justifying the numerous beneficial actions described as linked to green tea intake.
منابع مشابه
The Effect Of Individual Milk Proteins On Bioaccessibility Of Green Tea Flavan-3-Ols
Moser, Sydney Elizabeth. M.S., Purdue University, December 2013. The Effect of Individual Milk Proteins on Stability of Green Tea Flavan-3-ols. Major Professor: Mario G. Ferruzzi. While information regarding the impact of flavan-3-ol-protein interactions on food quality attributes (flavor, texture, and physical stability) exists, insight into the potential consequence of these interactions on b...
متن کاملHuman studies on the absorption, distribution, metabolism, and excretion of tea polyphenols.
Recent research on the bioavailability of flavan-3-ols after ingestion of green tea by humans is reviewed. Glucuronide, sulfate, and methyl metabolites of (epi)catechin and (epi)gallocatechin glucuronide reach peak nanomolar per liter plasma concentrations 1.6-2.3 h after intake, indicating absorption in the small intestine. The concentrations then decline, and only trace amounts remain 8 h aft...
متن کاملNongallated compared with gallated flavan-3-ols in green and black tea are more bioavailable.
Green tea and black tea (BT) contain gallated [(-)-epigallocatechin-3-gallate (EGCG), (-)-epicatechin-3-gallate] and nongallated [(-)-epicatechin, (-)-epigallocatechin (EGC)] tea polyphenols (PP). During BT production, PP undergo oxidation and form larger polymers such as theaflavins (THE) and thearubigins, which contribute to the health benefit of BT. This article gives an overview of the role...
متن کاملBioavailability of polyphenon E flavan-3-ols in humans with an ileostomy.
To investigate the degree of absorption of flavan-3-ols in the small intestine, human subjects with an ileostomy ingested 200 mg of Polyphenon E, a green tea extract, after which ileal fluid and urine, collected over a 24-h period, were analyzed by high-performance liquid chromatography with photodiode array and mass spectrometric detection. The data obtained indicated that although approximate...
متن کاملBioavailability of Coffee Chlorogenic Acids and Green Tea Flavan-3-ols
This paper reviews recent human studies on the bioavailability of chlorogenic acids in coffee and green tea flavan-3-ols in which the identification of metabolites, catabolites and parent compounds in plasma, urine and ileal fluid was based on mass spectrometric methodology. Both the chlorogenic acids and the flavan-3-ols are absorbed in the small intestine and appear in the circulatory system ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nutrition
دوره 26 11-12 شماره
صفحات -
تاریخ انتشار 2010